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Pass’s transform

(a,0,r0), (a,1,r1)

← Σ . Prove(x, w)

c ← {0,1}

rc, noncec

Check 

Check 

Σ . Verify(x, a, c, rc)
𝒞c = 𝖱𝖮(x, (a, c, rc), noncec)

⚠ (Inefficient; go for Fischlin variants instead) 
ia.cr/2022/393

Extractor
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a
𝒞0 = 𝖱𝖮(x, (a,0,r0), nonce0)
𝒞1 = 𝖱𝖮(x, (a,1,r1), nonce1)

https://ia.cr/2022/393


The UC RO hybrid model

Environment

Adversary

Environment

Ideal Adversary

Simulator

ℱPoK
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: 
If : 
    
return 

eval(x)
Q(x) = ⊥
Q(x) ← {0,1}n

Q(x)

Is this a good model?

Prover Verifier

Random oracle

Real world Ideal world



Environment

Random Oracle

Adversary

Is this a good model?
Random Oracle

Adversary

RO(123) = a03ab19b866fc RO(123) = 7106b623725f

This does not model reality!

What’s RO(123) ?What’s RO(123) ?

Let’s have two sessions of the protocol
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Environment

Global Random Oracle

Adversary Adversary

RO(123) = a03ab19b866fc

What’s RO(123) ?What’s RO(123) ?

The better model: Global ROM
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Two worlds with global ROM

Environment

Global random oracle

Adversary

Environment

Ideal Adversary

Simulator

ℱPoK
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Global random oracle

❗
❗

❗
Simulator does not get to observe 

all RO queries anymore ☹

Real world Ideal world



The observable global ROM
💡 Idea: Add observation capabilities to the 
ROM functionality.
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Fully observable global ROM
💡 Idea: Add observation capabilities to the 
ROM functionality.


: 
If : 
    
Add  to  

return 

eval(x)
Q(x) = ⊥
Q(x) ← {0,1}n

x Ω

Q(x)

: 
return 
getObs()

Ω
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Okay. Too much! No chance for ZK. 
Everyone sees everything always.

📋 Requirements


• For PoK: Simulator must be able to 
observe environment’s queries.


• For ZK: Environment must not be able 
to observe honest parties’ queries.



💭 Dream observable global ROM
💡 Idea: Add observation capabilities to the 
ROM functionality.


📋 Requirements


• For PoK: Simulator must be able to 
observe environment’s queries.


• For ZK: Environment must not be able to 
observe honest parties’ queries.


: 
If : 
    

if caller is environment: 
   Add  to  

return 

eval(x)
Q(x) = ⊥
Q(x) ← {0,1}n

x Ω

Q(x)

: 
return 
getObs()

Ω
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🦆 Solution: Domain separation

Cannot check this. Doesn’t make 
sense from G-ROM PoV



The observable global ROM
💡 Idea: Add observation capabilities to the 
ROM functionality.


📋 Requirements


• For PoK: Simulator must be able to 
observe environment’s queries.


• For ZK: Environment must not be able to 
observe honest parties’ queries.


🦆 Solution: Domain separation

: 
If : 
    

Parse  
if caller’s session is not : 
   Add  to  

return 

eval(x)
Q(x) = ⊥
Q(x) ← {0,1}n

x = (s, x′ )
s

x Ω

Q(x)

: 
return 
getObs()

Ω

11



Two worlds with global observable ROM

Environment Environment

ℱPoK
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s s

Parties in session  can query 
 unobservably

s
RO(s, x′ )

Environment’s (sessions ) 
queries  are observable

s′ ≠ s
RO(s, x′ )

Adversary’s queries 
 can be seen 

by simulator anyway
RO(s, x′ )



Summary part 1
• 🪞 Global ROM better reflects reality


• 👀 Need to explicitly model observability


• 😇 Good: Session  calls 


• 😈 Bad: Session  calls 


⇒ Observable


• 🥳 Get NIZKPoK in UC via Fischlin/Pass (+crs for 
simulation)  
Lysyanskaya, Rosenbloom; ia.cr/2022/290


• 🧑🏫 Learned: need domain-separation for composability 
(“implicit” in one-shot games/hybrid UC)

s RO(s, x′ )

s′ ≠ s RO(s, x′ )
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Environment

Ideal Adversary

Simulator

ℱPoK

Global random oracle

 eval(x)
getObs()

https://ia.cr/2022/290
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The generic group model

• 🎯 Goal: model “idealized” group with no “extra” 
structure (just group operations[, pairing]).


• Similar to random oracles, which model “idealized” hash 
function with no structure.


• 💡 Idea: group elements get random encoding  
(= no structure), but oracle enables group ops. 

• 👀 Corollary: oracle sees all group ops.
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private random injective  
public generator  

: 
return 

τ : 𝔾 → S
g

op(g1, g2)
τ(τ−1(g1) + τ−1(g2))

The generic group model
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Groth16







A =
m

∑
i=0

aiui + α + rδ

B =
m

∑
i=0

aivi + β + r′ δ

C = …

CRS: group elements 

Witness: wire values 

ui, α, β, δ
ai ∈ ℤp

Extractor

17

[Check some pairing 
equations on A,B,C]



Fast forwarding through the story
Local ROM: bad model 😕 

Both sessions use SHA-3, why am I getting different hashes?
Local GGM: bad model 😕


Both sessions use BLS12-381, why are elements incompatible?

Global ROM: lose observability. Remodel. 
Environment/other protocols can access global ROM  

without going through the simulator.

Global GGM: lose observability. Remodel.

Environment/other protocols can access global GGM  

without going through the simulator.

Domain separation: 
 is “valid/in-session” 


iff caller is in session .

Invalid queries are observable.

RO(s, x′ )
s

❓

ZK: honest parties only make “valid” unobservable queries within their domain.

PoK: when environment / protocol in session  queries related to domain , it’s observable.s′ ≠ s s

Domain separation: 
 is “valid/in-session” iff  are 

based on caller session’s generator 
op(g1, g2) g1, g2

hs
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Simplified G-oGG
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private random inj.  
public rnd generator  for each session  
public poly variable  for gen of each session  
private representation  for each , initially  

: 
 

 
  //bookkeep sum of polynomials 

if : //invalid in caller session 
   Add  to public observation list 
return 

τ : 𝔾 → S
hs s

Xs s
R[e] e ∈ S R[hs] = Xs

op(g1, g2)
s = caller session
result = τ(τ−1(g1) + τ−1(g2))
R[result] = R[g1] + R[g2]

R[result] ∉ ℤp[Xs]
(g1, g2, result)
result



Simplified G-oGG
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Example ops with caller session 


-  observable 


-  observable


-  unobservable


-  unobservable

s

17Xs op Xs′ 

(17Xs + 3Xs′ 
) op Xs

17Xs op 4Xs

(17Xs + 0Xs′ 
) op Xs

private random inj.  
public rnd generator  for each session  
public poly variable  for gen of each session  
private representation  for each , initially 

 

: 
 

 
  //bookkeep sum of polynomials 

if : //invalid in caller session 
   Add  to public observation list 
return 

τ : 𝔾 → S
hs s

Xs s
R[e] e ∈ S

R[hs] = Xs

op(g1, g2)
s = caller session
result = τ(τ−1(g1) + τ−1(g2))
R[result] = R[g1] + R[g2]

R[result] ∉ ℤp[Xs]
(g1, g2, result)
result



Actual G-oGG

-👯 Multiple generators per session


-🤷 Oblivious Sampling


-💫 Pairing operations
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Groth16 proof challenges
Extraction Simulation

Challenge 
Cannot observe everything  

(only my session’s generator(s))

Challenge 
Prover/Simulator GGM ops must 

not be observable

💡 Solution 
Argue that valid proofs cannot 

contain foreign generators

💡 Solution 
Prover/simulator only operates 

on CRS elements

Idea 
Extract dlog representation of 

proof elements

Idea 
Use CRS trapdoor to generate 

proofs without witness
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ElGamal

Challenge 
Decrypting foreign ciphertext 
makes secret key observable

sk

(c0, c1)

−sk ⋅ c1 + c0

Observable 🚨

Can contain foreign gs′ 

Environment

💡 Solution 
Observations only needed in Groth16 

ideal world, not in real.  
Can switch them off in real world
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Composing ElGamal with Groth16

≈

No observations

UCGS
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Composing ElGamal with Groth16

≈
No change
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Composing ElGamal with Groth16

≈
UCGS
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Summary

• 👀 Need to explicitly model observability 

• Not trivial!


• 🥳 Get Groth16 SNARK in UC


• 🥳 Still make ElGamal composition work


• UC is (unnecessarily?) strict. 
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🙋 Backup slides



Resource conflicts



Resource conflicts: Restrict to Obs



Resource conflicts: UC


