
Universal Composability
with Global Generic Groups

/

Jan Bobolz

Pooya Farshim

Markulf Kohlweiss

Akira Takahashi

Let’s spin the PoK wheel 🎰

Ob
se

rv
e

R
OM

Rew
inding

Kn
ow

le
dg

e

As
su
m
pt
io
n

Observe AGM
Observe

GGM

C
R
S

Trapd
o
or

2

Pass’s transform

(a,0,r0), (a,1,r1)

← Σ . Prove(x, w)

c ← {0,1}

rc, noncec

Check

Check

Σ . Verify(x, a, c, rc)
𝒞c = 𝖱𝖮(x, (a, c, rc), noncec)

⚠ (Inefficient; go for Fischlin variants instead)
ia.cr/2022/393

Extractor

3

a
𝒞0 = 𝖱𝖮(x, (a,0,r0), nonce0)
𝒞1 = 𝖱𝖮(x, (a,1,r1), nonce1)

https://ia.cr/2022/393

The UC RO hybrid model

Environment

Adversary

Environment

Ideal Adversary

Simulator

ℱPoK

4

:
If :

return

eval(x)
Q(x) = ⊥
Q(x) ← {0,1}n

Q(x)

Is this a good model?

Prover Verifier

Random oracle

Real world Ideal world

Environment

Random Oracle

Adversary

Is this a good model?
Random Oracle

Adversary

RO(123) = a03ab19b866fc RO(123) = 7106b623725f

This does not model reality!

What’s RO(123) ?What’s RO(123) ?

Let’s have two sessions of the protocol

5

Environment

Global Random Oracle

Adversary Adversary

RO(123) = a03ab19b866fc

What’s RO(123) ?What’s RO(123) ?

The better model: Global ROM

6

Two worlds with global ROM

Environment

Global random oracle

Adversary

Environment

Ideal Adversary

Simulator

ℱPoK

7

Global random oracle

❗
❗

❗
Simulator does not get to observe

all RO queries anymore ☹

Real world Ideal world

The observable global ROM
💡 Idea: Add observation capabilities to the
ROM functionality.

8

Fully observable global ROM
💡 Idea: Add observation capabilities to the
ROM functionality.

:
If :

Add to

return

eval(x)
Q(x) = ⊥
Q(x) ← {0,1}n

x Ω

Q(x)

:
return
getObs()

Ω

9

Okay. Too much! No chance for ZK.
Everyone sees everything always.

📋 Requirements

• For PoK: Simulator must be able to
observe environment’s queries.

• For ZK: Environment must not be able
to observe honest parties’ queries.

💭 Dream observable global ROM
💡 Idea: Add observation capabilities to the
ROM functionality.

📋 Requirements

• For PoK: Simulator must be able to
observe environment’s queries.

• For ZK: Environment must not be able to
observe honest parties’ queries.

:
If :

if caller is environment:
 Add to

return

eval(x)
Q(x) = ⊥
Q(x) ← {0,1}n

x Ω

Q(x)

:
return
getObs()

Ω

10

🦆 Solution: Domain separation

Cannot check this. Doesn’t make
sense from G-ROM PoV

The observable global ROM
💡 Idea: Add observation capabilities to the
ROM functionality.

📋 Requirements

• For PoK: Simulator must be able to
observe environment’s queries.

• For ZK: Environment must not be able to
observe honest parties’ queries.

🦆 Solution: Domain separation

:
If :

Parse
if caller’s session is not :
 Add to

return

eval(x)
Q(x) = ⊥
Q(x) ← {0,1}n

x = (s, x′)
s

x Ω

Q(x)

:
return
getObs()

Ω

11

Two worlds with global observable ROM

Environment Environment

ℱPoK

12

s s

Parties in session can query
 unobservably

s
RO(s, x′)

Environment’s (sessions)
queries are observable

s′ ≠ s
RO(s, x′)

Adversary’s queries
 can be seen

by simulator anyway
RO(s, x′)

Summary part 1
• 🪞 Global ROM better reflects reality

• 👀 Need to explicitly model observability

• 😇 Good: Session calls

• 😈 Bad: Session calls

⇒ Observable

• 🥳 Get NIZKPoK in UC via Fischlin/Pass (+crs for
simulation)  
Lysyanskaya, Rosenbloom; ia.cr/2022/290

• 🧑🏫 Learned: need domain-separation for composability
(“implicit” in one-shot games/hybrid UC)

s RO(s, x′)

s′ ≠ s RO(s, x′)

13

Environment

Ideal Adversary

Simulator

ℱPoK

Global random oracle

 eval(x)
getObs()

https://ia.cr/2022/290

Let’s spin the PoK wheel 🎰

O
bserve
R
O
MRewinding

Knowledge

Assumption

Ob
ser

ve AG
M

Obs
erv

e

GGM

C
R
S

Tr
ap

d
o
o
r

14

The generic group model

• 🎯 Goal: model “idealized” group with no “extra”
structure (just group operations[, pairing]).

• Similar to random oracles, which model “idealized” hash
function with no structure.

• 💡 Idea: group elements get random encoding  
(= no structure), but oracle enables group ops.

• 👀 Corollary: oracle sees all group ops.

15

private random injective
public generator

:
return

τ : 𝔾 → S
g

op(g1, g2)
τ(τ−1(g1) + τ−1(g2))

The generic group model

16

Groth16

A =
m

∑
i=0

aiui + α + rδ

B =
m

∑
i=0

aivi + β + r′ δ

C = …

CRS: group elements

Witness: wire values

ui, α, β, δ
ai ∈ ℤp

Extractor

17

[Check some pairing
equations on A,B,C]

Fast forwarding through the story
Local ROM: bad model 😕 

Both sessions use SHA-3, why am I getting different hashes?
Local GGM: bad model 😕

Both sessions use BLS12-381, why are elements incompatible?

Global ROM: lose observability. Remodel. 
Environment/other protocols can access global ROM  

without going through the simulator.

Global GGM: lose observability. Remodel.

Environment/other protocols can access global GGM  

without going through the simulator.

Domain separation: 
 is “valid/in-session”

iff caller is in session .

Invalid queries are observable.

RO(s, x′)
s

❓

ZK: honest parties only make “valid” unobservable queries within their domain.

PoK: when environment / protocol in session queries related to domain , it’s observable.s′ ≠ s s

Domain separation: 
 is “valid/in-session” iff are

based on caller session’s generator
op(g1, g2) g1, g2

hs

18

Simplified G-oGG

19

private random inj.
public rnd generator for each session
public poly variable for gen of each session
private representation for each , initially

:

 //bookkeep sum of polynomials

if : //invalid in caller session
 Add to public observation list
return

τ : 𝔾 → S
hs s

Xs s
R[e] e ∈ S R[hs] = Xs

op(g1, g2)
s = caller session
result = τ(τ−1(g1) + τ−1(g2))
R[result] = R[g1] + R[g2]

R[result] ∉ ℤp[Xs]
(g1, g2, result)
result

Simplified G-oGG

20

Example ops with caller session

- observable

- observable

- unobservable

- unobservable

s

17Xs op Xs′

(17Xs + 3Xs′
) op Xs

17Xs op 4Xs

(17Xs + 0Xs′
) op Xs

private random inj.
public rnd generator for each session
public poly variable for gen of each session
private representation for each , initially

:

 //bookkeep sum of polynomials

if : //invalid in caller session
 Add to public observation list
return

τ : 𝔾 → S
hs s

Xs s
R[e] e ∈ S

R[hs] = Xs

op(g1, g2)
s = caller session
result = τ(τ−1(g1) + τ−1(g2))
R[result] = R[g1] + R[g2]

R[result] ∉ ℤp[Xs]
(g1, g2, result)
result

Actual G-oGG

-👯 Multiple generators per session

-🤷 Oblivious Sampling

-💫 Pairing operations

21

Groth16 proof challenges
Extraction Simulation

Challenge
Cannot observe everything

(only my session’s generator(s))

Challenge
Prover/Simulator GGM ops must

not be observable

💡 Solution
Argue that valid proofs cannot

contain foreign generators

💡 Solution
Prover/simulator only operates

on CRS elements

Idea
Extract dlog representation of

proof elements

Idea
Use CRS trapdoor to generate

proofs without witness

22

ElGamal

Challenge
Decrypting foreign ciphertext
makes secret key observable

sk

(c0, c1)

−sk ⋅ c1 + c0

Observable 🚨

Can contain foreign gs′

Environment

💡 Solution
Observations only needed in Groth16

ideal world, not in real.
Can switch them off in real world

23

Composing ElGamal with Groth16

≈

No observations

UCGS

24

Composing ElGamal with Groth16

≈
No change

25

Composing ElGamal with Groth16

≈
UCGS

26

Summary

• 👀 Need to explicitly model observability

• Not trivial!

• 🥳 Get Groth16 SNARK in UC

• 🥳 Still make ElGamal composition work

• UC is (unnecessarily?) strict.

27

🙋 Backup slides

Resource conflicts

Resource conflicts: Restrict to Obs

Resource conflicts: UC

