
On the impossibility of surviving
(iterated) deletion of weakly

dominated strategies in rational MPC.

Jan BobolzJohannes Blömer, Henrik Bröcher

📑 TCC 2023 ia.cr/2022/1762

https://ia.cr/2022/1762

Traditional MPC

2

Secure mooltiparty computation

x1

f(x1, x2, x3, x4)

x3

f(x1, x2, x3, x4)

x4

f(x1, x2, x3, x4)

x2

f(x1, x2, x3, x4)

3

Secure mooltiparty computation

x1

f(x1, x2, x3, x4)

x3

f(x1, x2, x3, x4)

x4

f(x1, x2, x3, x4)

x2

f(x1, x2, x3, x4)

Malicious party does not learn
anything about other than

what’s revealed by

i
x−i

f(x1, x2, x3, x4)

Malicious party
cannot influence result

other than by choosing
or by aborting

i

xi

4

Criticism on standard MPC definition

• 💪 Too strong: protects against
irrational attacks

⇒ Fairness impossible (2 party)

• 🤷 Too weak: assumes that at least
one party altruistically follows the
protocol

• What if nobody is purely honest?

5

Rational MPC

6

Rational MPC
• players.

• Each player chooses a strategy .

• (A security parameter is chosen).

• Then the game commences.

• Each player tries to maximize expected
utility 

n

i si

λ

i

ui(λ, s1, …, sn) := Eλ,s[u′￼i(x1, …, xn, y1, …, yn)]

7

 is a ppt interactive Turing machinesi

Utility depends on
input/output

1. Choose random input
2. Run all the ,

interacting with each other (sync rounds)
3. Each outputs some

(x1, …, xn) ← I(λ)
si(xi)

si yi

Mechanisms
• players.

• Each player chooses a strategy .

• (A security parameter is chosen).

• Then the game commences.

• Each player tries to maximize expected
utility 

n

i si

λ

i

ui(λ, s1, …, sn) := Eλ,s[u′￼i(x1, …, xn, y1, …, yn)]

A mechanism is a strategy
prescription (algorithm) for the players.

Intuitive security expectation:
“it’s rational for player to play ”

(s1, …, sn)

i si

 if b1 ⊕ b2 c = 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)

b1 ⊕ b2

c ← 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)

b1

b2, r

 if 0 c ≠ 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)

8

Nash equilibria
• When is a mechanism good? 

If no player has an incentive to deviate from their prescribed strategy.

9

A strategy profile is a Nash equilibrium if
no player gains (non-negligibly) by unilaterally deviating:

s = (s1, …, sn)

∀i ∀s′￼i ∃negl ∀λ : ui(λ, si, s−i) ≥ ui(λ, s′￼i, s−i) − negl(λ)

Building rational
MPC protocols

10

Blueprint for rational MPC

• Step 1: Make sure function/utilities are such
that lying about input is irrational.

• Step 2: Use GMW-style maliciously secure
MPC to compute the function value.  
At the end, everyone holds a secret-share
of the result + proofs of correctness.

• Step 3: Use rational secret-reconstruction
protocol so that everyone learns the result.

11

x1 xn

GMW 🌐

x1
xn

f(x) f(x)

Secret reconstruction 🧩

f(x) f(x)

…

…

…

…

Secret
reconstruction

12

The secret reconstruction scenario

13

• players.

• Each player chooses a Turing machine .

• (A security parameter is chosen).

• Then the game commences.

1. Dealer chooses random secret (known

distribution).

2. Dealer shares with authenticated secret-sharing

3. Inputs .

4. Run all the , interacting with each

other (sync rounds).

5. Each outputs some , hoping .

• Each player tries to maximize expected utility  

n

i si

λ

y*

y*
xi = (pk, sharei, σi)

si(pk, sharei, σi)

si yi yi = y*

i
ui(λ, s1, …, sn) := Eλ,s[u′￼i(x1, …, xn, y1, …, yn)]

Utilities: any, as long as:
(1) correctness: prefers over .

(2) exclusivity: prefers not to output right

result.

i yi = y* y′￼i ≠ y*
u′￼i(…, yi, …) ≥ u′￼i(…, y′￼i, …) + p(λ)

i j

u′￼i(…, y′￼j, …) ≥ u′￼i(…, yj, …) + p(λ)

Secret reconstruction:

MPC with f(x1, …, xn) = 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝖲𝖾𝖼𝗋𝖾𝗍(x1, …, xn)

Trivial protocol for secret-reconstruction

-out-of- secret sharing.

Protocol : just broadcast input ,
receive all broadcasts, check signatures,

if enough valid shares: reconstruct .

(n − 1) n

si (sharei, σi)

y

(1) correctness: prefers outputting .
(2) exclusivity: prefers not to output .

i y*
i j y*

14

✅ Nash Equilibrium

share1, σ1

y*

Send (share1, σ1)

Send (share1, σ1)

Send (share1, σ1)

Wrong/no share

Wrong/no share

Wrong/no share

Trivial protocol for secret-reconstruction

-out-of- secret sharing.

Protocol : just broadcast input ,
receive all broadcasts, check signatures,

reconstruct from shares, output .

n n

si (sharei, σi)

y y

(1) correctness: prefers outputting .
(2) exclusivity: prefers not to output .

i y*
i j y*

15

❌ Nash Equilibrium

share1, σ1

y*

Send (share1, σ1)

Send (share1, σ1)

Send (share1, σ1)

Wrong/no share

Wrong/no share

Wrong/no share

Secret
reconstruction

for n = 2
Can we make out of work?n n

16

 out of reconstructionn n

• Run MPC that will

• With probability : produce (auth’d) sharing of

• With probability : produce (auth’d) sharing of

• Everyone broadcasts the new sharing (hopefully)

• If someone doesn’t broadcast, abort everything 🔥

• If reconstructed secret is , repeat. Otherwise, output .

β y*

1 − β ⊥

⊥ y*

17

Reshare MPC 🧩 → 🧩’
share with probability y* β

/y* ⊥ /y* ⊥

Broadcast shares

…

…

…

/y* ⊥ /y* ⊥…

If we have a fixed last round in which
everyone learns the secret: bad.

So we hide which round is the one.

repeat

if ⊥

y* y*

Deviation is punished:
don’t broadcast in round:
don’t learn secret ever.

⊥

[Gordon, Katz 2006] and, concurrently, [Abraham, Dolev, Gonen, Halpern 2006]

 out of reconstructionn n
• The other party definitely sends the shares every time.

• When not broadcasting, don’t know whether I’ll get or .

• If : I win! Expected utility for deviating:

• If : I’ll never learn secret b/c other party stops 🔥.  
Expected utility for deviating:

y* ⊥

y* β ⋅ U+

⊥
(1 − β) ⋅ U−

18

Reshare MPC 🧩 → 🧩’
share with probability y* β

/y* ⊥ /y* ⊥

Broadcast shares

/y* ⊥ /y* ⊥

…

…

…

…

repeat

if ⊥

y* y*

Deviate: utility
β ⋅ U+ + (1 − β) ⋅ U− Honest: utility U U+ > U > U−

Set such that β
β ⋅ U+ + (1 − β) ⋅ U− < U

[Gordon, Katz 2006] and, concurrently, [Abraham, Dolev, Gonen, Halpern 2006]

Weakly dominated
strategies

a story with twists and turns

19

Weakly dominated strategies

20

A strategy weakly dominates for player if:
Sometimes better:

Never worse:

sbetter sbad i
∃s−i : ui(λ, sbetter, s−i) > ui(λ, sbad, s−i)

∀s−i : ui(λ, sbetter, s−i) ≥ ui(λ, sbad, s−i)
+p(λ)

−negl(λ)

Idea: why would I play if could be better in some scenarios
and is never really worse?

⇒ additional criterion for “is this mechanism good?”:
 Nobody is expected to play weakly dominated strategy.

sbad sbetter

The spirit of weak domination

21

-out-of- secret sharing.

Protocol:
• Do nothing in round 1.
• If everyone else has broadcast “destroy” in round 1,
stop and output invalid secret.

• Round 2: Broadcast input.
• Round 3: Reconstruct secret and output.

(n − 1) n 🐍

A strategy weakly dominates for player if:
Sometimes better:

Never worse:

sbetter sbad i
∃s−i : ui(λ, sbetter, s−i) > ui(λ, sbad, s−i)

∀s−i : ui(λ, sbetter, s−i) ≥ ui(λ, sbad, s−i)
+p(λ)

−negl(λ)

✅ Nash equilibrium

❌ Weak domination

Overview of history

22

Halpern-Teague: “broadcast-
share is weakly dominated, here’s
how to circumvent it.”

2004 2006 2008

Gordon-Katz, Abraham-Dolev-Gonen-Halpern,
Lysyanskaya-Triandopoulos:
“Here are better workarounds.”

Kol-Naor: “actually, nothing is ever
weakly dominated, there’s always a
savior strategy.” [in restricted model]

… 2022

We: “actually, all strategies are
weakly dominated if the shares are
authenticated”

Reshare

Broadcast

/y* /y*

…

…

…

…

Our impossibility
result

No mechanism survives weak
domination

23

An arbitrary mechanism

share1, σ1

y*

share3, σ3

share4, σ4

share2, σ2

24

y*

y*

y*

💡 A weakly dominating strategy

share1, σ1

y*

25

If in first round, every other party
sent “ ” with valid
signatures, then reconstruct and
output it.

Otherwise, output the that the
mechanism would output.

(𝗅𝖾𝖺𝗄, sharej, σj)
y*

y*

Behave exactly as original
strategy, but at the end:

👍 Sometimes better

share1, σ1

y*

26

If in first round, every other party
sent “ ” with valid
signatures, then reconstruct and
output it.

Otherwise, output the that the
mechanism would output.

(𝗅𝖾𝖺𝗄, sharej, σj)
y*

y*

This strategy outputs the correct secret.

Original strategy outputs error because
first message malformed. (𝗅𝖾𝖺𝗄, share2, σ2)

(𝗅𝖾𝖺𝗄, share3, σ3)

(𝗅𝖾𝖺𝗄, share4, σ4)

✋ Never worse

share1, σ1

y*

27

If in first round, every other party
sent “ ” with valid
signatures, then reconstruct and
output it.

Otherwise, output the that the
mechanism would output.

(𝗅𝖾𝖺𝗄, sharej, σj)
y*

y*

No matter what the other strategies do,
we only deviate by outputting the correct
secret (~ unforgeability of)σj

🏁 Conclusion

share1, σ1

y*

28

If in first round, every other party
sent “ ” with valid
signatures, then reconstruct and
output it.

Otherwise, output the that the
mechanism would output.

(𝗅𝖾𝖺𝗄, sharej, σj)
y*

y*

This strategy weakly dominates any
“natural” mechanism strategy
(that doesn’t happen to parse messages). 𝗅𝖾𝖺𝗄

💡💡 An alternative weakly dominating strategy

share1, σ1

y*

29

If in first round, every other party
sent “ ” with valid
signatures, then reconstruct and
output it.

Otherwise, output the that the
mechanism would output.

(𝗅𝖾𝖺𝗄, ¯sharej, σ̄j)
y*

y*

This strategy weakly dominates any
“natural” mechanism strategy
(that doesn’t happen to parse messages). 𝗅𝖾𝖺𝗄

Encoded in base64.
Or inverted bits.
Or morse code.

Or …

Consequences

Reshare MPC 🧩 → 🧩’
share with probability y* β

/y* ⊥ /y* ⊥

Broadcast shares

/y* ⊥ /y* ⊥

…

…

…

…

repeat

if ⊥

y* y*

Every imaginable protocol with
authenticated shares is weakly dominated.

Counterexamples: what if everyone leaks
their input in some weird encoding? 🤯

30

Takeaways
• 👍 Rational MPC enables good properties

(fairness). Sometimes better model.

• 👎 Weak domination is too strict.

• 🧠 We long believed it to be too weak.

• 🔥 No known protocol survives weak
domination

• 🧯 Lots of work to be done.

• 📚 Replacement for weak domination?

• 🛠 Better protocols / settings?
31

Thanks!

Backup slides

Protocols without
locally verifiable shares

33

🔍 What the counterexample needs

✋ Never worse👍 Sometimes better

Against input-leaking strategies, we
do better. Only deviation: output correct result.

What if I cannot check whether result
is correct?

🤔 But without authentication, parties
may lie about their shares

ADGH06’s third protocol

No explicit authentication, but  
inconsistent shares of <n/3 parties  
can be detected.

Reshare MPC 🧩 → 🧩’
share with probability y* β

/y* ⊥ /y* ⊥

Broadcast shares

/y* ⊥ /y* ⊥

…

…

…

…

repeat

if ⊥

y* y*

Idea: instead of signing the shares,
use Reed-Solomon Codes

Degree of : about n/3
f(0) = y*, sharej = f(j)

f

Our counterexample cannot claim
“never worse” anymore.

Good enough for Nash equilibrium

[Abraham, Dolev, Gonen, Halpern 2006]

💡 ADGH06 is also weakly dominated

Change:  
If , then return y* > 1000 y* − 1000

share1, σ1

y*

Assume secrets are
never chosen.

y* > 1000

👍 Sometimes better
Against strategies that locally change
their shares to
(while keeping first user’s share the same)

[y*] [y* + 1000] ✋ Never worse
Only deviate if output is definitely wrong

Secure coin flipping

b1 ⊕ b2

🎲b2 ←

b1 ⊕ b2

37

c ← 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)

b1

b2, r

c != 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r) Can cheat: learns result first
and can abort.
No fairness.

🎲b1 ←

Rational coin flipping

 if b1 ⊕ b2 c = 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)

b1 ⊕ b2

38

c ← 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)

b1

b2, r

If you abort, you “lose”
⇒ Abort allowed but irrational

 if 0 c ≠ 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)

u′￼1(c, b1, b2, r) =
10 if b1 ⊕ b2 = 0

or c ≠ 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)
−10 otherwise

u′￼2 = − u′￼1

🎲b2 ←🎲b1 ←

Rational coin flipping

39

c ← 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)

b1

b2, r

Incentive to send a non-random bit ?
Only negligibly
(e.g., try breaking hiding)

b1

u′￼1(c, b1, b2, r) =
10 if b1 ⊕ b2 = 0

or c ≠ 𝖢𝗈𝗆𝗆𝗂𝗍(b2; r)
−10 otherwise

u′￼2 = − u′￼1

🎲b2 ←🎲b1 ←

Incentive to abort? No.
Commit differently? Negligibly
(e.g., try breaking binding)

Impossibility result

