On the impossibility of surviving (iterated) deletion of weakly dominated strategies in rational MPC.

Johannes Blömer, Henrik Bröcher

TCC 2023 ia.cr/2022/1762

Jan Bobolz

Traditional MPC

Secure mooltiparty computation

Malicious party *i* cannot influence result other than by choosing x_i or by aborting

 \checkmark

Malicious party *i* does not learn anything about x_{-i} other than what's revealed by $f(x_1, x_2, x_3, x_4)$

 $f(x_1, x_2, x_3, x_4)$

 X_4

Criticism on standard MPC definition

- **5** Too strong: protects against *irrational* attacks
 - \Rightarrow Fairness impossible (2 party)
- W Too weak: assumes that at least one party *altruistically* follows the protocol
 - What if *nobody* is purely *honest*?

5

Rational MPC

- *n* players.
- Each player *i* chooses a strategy s_i .
- (A security parameter λ is chosen).
- Then the **game** commences.

• Each player *i* tries to maximize expected utility $u_i(\lambda, s_1, \dots, s_n) := E_{\lambda, s}[u'_i(x_1, \dots, x_n, y_1, \dots, y_n)]$

Utility depends on input/output

Mechanisms

- *n* players.
- Each player i chooses a strategy s_i .
- (A security parameter λ is chosen).
- Then the game commences.

• Each player *i* tries to maximize expected **utility** $u_i(\lambda, s_1, ..., s_n) := E_{\lambda,s}[u'_i(x_1, ..., x_n, y_1, ..., y_n)]$

A mechanism $(s_1, ..., s_n)$ is a strategy prescription (algorithm) for the players.

Intuitive security expectation: "it's rational for player i to play s_i "

Nash equilibria

When is a mechanism good?

 $\forall i \forall S'_i \exists negl \forall \lambda : u_i(\lambda, S_i, S_{-i}) \geq u_i(\lambda, S'_i, S_{-i}) - negl(\lambda)$

If no player has an incentive to deviate from their prescribed strategy.

A strategy profile $s = (s_1, ..., s_n)$ is a Nash equilibrium if no player gains (non-negligibly) by unilaterally deviating:

Building rational MPC protocols

Blueprint for rational MPC

- Step 1: Make sure function/utilities are such that lying about input is irrational.
- Step 2: Use GMW-style maliciously secure MPC to compute the function value. At the end, everyone holds a secret-share of the result + proofs of correctness.
- Step 3: Use rational secret-reconstruction protocol so that everyone learns the result.

Secret reconstruction 🖑

. . .

Secret reconstruction

The secret reconstruction scenario

Secret reconstruction:

MPC with $f(x_1, ..., x_n) = \text{ReconstructSecret}(x_1, ..., x_n)$

Utilities: any, as long as: (1) correctness: *i* prefers $y_i = y^*$ over $y'_i \neq y^*$. $u'_i(\dots, y_i, \dots) \ge u'_i(\dots, y'_i, \dots) + p(\lambda)$ (2) exclusivity: *i* prefers *j* not to output right result. $u'_i(\dots, y'_j, \dots) \ge u'_i(\dots, y_j, \dots) + p(\lambda)$

- *n* players.
- Each player i chooses a **Turing machine** s_i .
- (A security parameter λ is chosen).
- Then the game commences.
 - 1. Dealer chooses random secret y^* (known distribution).
 - 2. Dealer shares y^* with **authenticated secret-sharing**
 - 3. Inputs $x_i = (pk, share_i, \sigma_i)$.
 - 4. Run all the $s_i(pk, share_i, \sigma_i)$, interacting with each other (sync rounds).
 - 5. Each s_i outputs some y_i , hoping $y_i = y^*$.
- Each player *i* tries to maximize expected **utility** $u_i(\lambda, s_1, \dots, s_n) := E_{\lambda,s}[u'_i(x_1, \dots, x_n, y_1, \dots, y_n)]$

Trivial protocol for secret-reconstruction

(n-1)-out-of-*n* secret sharing.

Protocol s_i : just broadcast input $(share_i, \sigma_i)$, receive all broadcasts, check signatures, if enough valid shares: reconstruct *y*.

(1) correctness: *i* prefers outputting y^* . (2) exclusivity: *i* prefers *j* not to output y^* .

Wrong/no share

Wrong/no share

Wrong/no share

Trivial protocol for secret-reconstruction

n-out-of-*n* secret sharing.

Protocol s_i : just broadcast input $(share_i, \sigma_i)$, receive all broadcasts, check signatures, reconstruct *y* from shares, output *y*.

(1) correctness: *i* prefers outputting y^* . (2) exclusivity: *i* prefers *j* not to output y^* .

Wrong/no share

Wrong/no share

Wrong/no share

Secret reconstruction for n = 2

Can we make *n* out of *n* work?

[Gordon, Katz 2006] and, concurrently, [Abraham, Dolev, Gonen, Halpern 2006]

n out of n reconstruction

If we have a fixed last round in which everyone learns the secret: bad. So we hide which round is *the one*. Deviation is punished: don't broadcast in \bot round: don't learn secret ever.

repeat

if ⊥

- Run MPC that will
 - With probability β : produce (auth'd) sharing of y^*
 - With probability 1β : produce (auth'd) sharing of \perp
- Everyone broadcasts the new sharing (hopefully)
- If someone doesn't broadcast, abort everything
- If reconstructed secret is \bot , repeat. Otherwise, output y^* .

[Gordon, Katz 2006] and, concurrently, [Abraham, Dolev, Gonen, Halpern 2006]

- - Expected utility for deviating: $(1 \beta) \cdot U^{-1}$

Weakly dominated strategies

a story with twists and turns

Weakly dominated strategies

A strategy s_{better} weakly Sometimes better: $\exists s_{-i}$: Never worse: $\forall s_{-i}$: u_i

Idea: why would I play s_{bad} if s_{better} could be better in some scenarios and is never really worse?

⇒ additional criterion for "is this mechanism good?":
 Nobody is expected to play weakly dominated strategy.

dominates
$$s_{\text{bad}}$$
 for player *i* if:
 $u_i(\lambda, s_{\text{better}}, s_{-i}) > u_i(\lambda, s_{\text{bad}}, s_{-i}) + p(\lambda)$
 $(\lambda, s_{\text{better}}, s_{-i}) \ge u_i(\lambda, s_{\text{bad}}, s_{-i}) - negl(\lambda)$

The spirit of weak domination

A strategy s_{better} weakly dominates s_{bad} for player *i* if: Sometimes better: $\exists s_{-i} : u_i(\lambda, s_{better}, s_{-i}) > u_i(\lambda, s_{bad}, s_{-i}) + p(\lambda)$ Never worse: $\forall s_{-i}$: $u_i(\lambda, s_{\text{better}}, s_{-i}) \ge u_i(\lambda, s_{\text{bad}}, s_{-i}) - negl(\lambda)$

(n-1)-out-of-*n* secret sharing.

- **Protocol:**
- Do nothing in round 1.
- If everyone else has broadcast "destroy" in round 1, stop and output invalid secret.
- Round 2: Broadcast input.
- Round 3: Reconstruct secret and output.

Overview of history

. . .

2008

2022

Kol-Naor: "actually, *nothing* is ever weakly dominated, there's always a savior strategy." [in restricted model]

We: "actually, *all* strategies are weakly dominated if the shares are authenticated"

Our impossibility result

No mechanism survives weak domination

Q A weakly dominating strategy

Behave exactly as original strategy, but at the end:

If in first round, every other party sent "(leak, *share*_{*j*}, σ_j)" with valid signatures, then reconstruct *y** and output it.

Otherwise, output the y^* that the mechanism would output.

This strategy outputs the correct secret.

Original strategy outputs error because first message malformed.

If in first round, every other party sent "(leak, *share*_{*j*}, σ_j)" with valid signatures, then reconstruct y^* and output it.

Otherwise, output the y^* that the mechanism would output.

Sometimes better

No matter what the other strategies do, we only deviate by outputting the correct <u>secret</u> (~ unforgeability of σ_i)

If in first round, every other party sent "(leak, *share*_{*j*}, σ_i)" with valid signatures, then reconstruct y^* and output it.

Otherwise, output the y^* that the mechanism would output.

Never worse

Conclusion

This strategy weakly dominates any "natural" mechanism strategy (that doesn't happen to parse leak messages).

If in first round, every other party sent "(leak, *share*_j, σ_j)" with valid signatures, then reconstruct y^* and output it.

Otherwise, output the y^* that the mechanism would output.

An alternative weakly dominating strategy

This strategy weakly dominates any "natural" mechanism strategy share₁, σ_1 (that doesn't happen to parse leak messages). If in first round, every other party v^* sent "(leak, $share_j$, $\bar{\sigma}_j$)" with valid signatures, then reconstruct v^* and output it. Encoded in base64. Or inverted bits. Otherwise, output the y^* that the Or morse code. mechanism would output. Or ...

Every imaginable protocol with authenticated shares is weakly dominated.

Counterexamples: what if everyone leaks their input in some weird encoding?

Takeaways

- Actional MPC enables good properties (fairness). Sometimes better model.
- Weak domination is too strict.
 - We long believed it to be too weak.
 - In the second sec domination
- 🛅 Lots of work to be done.
 - Replacement for weak domination?
 - X Better protocols / settings?

Backup slides

Protocols without locally verifiable shares

Sometimes better

Against input-leaking strategies, we do better.

What the counterexample needs

Only deviation: output correct result.

What if I cannot check whether result is correct?

But without authentication, parties may lie about their shares

[Abraham, Dolev, Gonen, Halpern 2006]

ADGH06's third protocol

Idea: instead of signing the shares, use Reed-Solomon Codes $f(0) = y^*$, $share_j = f(j)$ Degree of *f*: about n/3

No explicit authentication, but inconsistent shares of <n/3 parties can be detected.

Good enough for Nash equilibrium

Our counterexample cannot claim "never worse" anymore.

ADGH06 is also weakly dominated

Assume secrets $y^* > 1000$ are never chosen.

Change: If $y^* > 1000$, then return $y^* - 1000$

<u>Sometimes better</u>

Against strategies that locally change their shares $[y^*]$ to $[y^* + 1000]$ (while keeping first user's share the same)

Wever worse Only deviate if output is definitely wrong

Secure coin flipping

 $b_1 \oplus b_2$ $c \stackrel{!}{=} \operatorname{Commit}(b_2; r)$

$c \leftarrow \text{Commit}(b_2; r)$

 b_2, r

Can cheat: learns result first and can abort. No fairness.

Rational coin flipping $u'_2 = -u'_1$

 $c \leftarrow \text{Commit}(b_2; r)$

 b_{2}, r

If you abort, you "lose" \Rightarrow Abort allowed but irrational

Incentive to send a non-random bit b_1 ? Only negligibly (e.g., try breaking hiding)

Rational coin flipping $u'_2 = -u'_1$

 $c \leftarrow \text{Commit}(b_2; r)$

 b_{2}, r

Incentive to abort? No. **Commit differently?** Negligibly (e.g., try breaking binding)

Impossibility result

Theorem 2. Let $\Pi = (\text{Setup}_{\Pi}, \text{Share}, \text{Recon})$ be a secret sharing scheme (Definition 3) with perfect privacy (Definition 4). Consider a secret reconstruction game (Definition 12) for Π , with non-uniform strategies, non-trivial distribution of secrets (Definition 14), and reconstruction utilities preferring correctness (Definition 13). Let $(M_i, \omega'_1, \omega'_2, \dots)$ be a strategy for the secret reconstruction game, i.e. a non-uniform ppt ITM. If Π has (non-uniform) local (n-1)-verifiability (Definition 5), then there exists another strategy $(M_i^*, (\omega_1, \omega_2, \dots))$ which weakly dominates $(M_i, \omega'_1, \omega'_2, \dots)$ (Definition 10).

Theorem 4. Let Π be a secret sharing scheme (Definition 3) with perfect privacy (Definition 3) that is verifiable-or-fully-broken (Definition 16) for secret distributions S. Consider the secret reconstruction game for secret sharing scheme Π with non-uniform strategies, non-trivial distribution of secrets \mathcal{S} (Definition 14), and reconstruction utilities preferring correctness and exclusivity (Definition 13). Let $t \ge n/2$. Then there exists no mechanism with the following properties:

- The mechanism is a *t*-resilient Nash equilibrium (Definition 9).

• If everyone follows the mechanism, the correct secret is reconstructed with probability 1.

• There is no coalition $C \subseteq [n], |C| = t$ such that M_C is weakly dominated (Definition 15).

